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1 INTRODUCTION

For over 100 years, Albert Einstein’s general theory of relativity has remained the prevailing description
of gravitation. It is one of the most successful theories in physics and has made remarkable predictions
that have been observed and confirmed with incredible accuracy. One such prediction, made by
Einstein himself shortly after publishing his theory of relativity, is the existence of gravitational waves
- although he never thought that they could be detected. In an interesting series of events, Einstein
actually came to doubt his prediction and attempted to publish a paper with Nathan Rosen arguing
that gravitational waves could not exist. His paper was rejected in the peer-review process on the basis
of an error in the calculation. Einstein was furious that his paper was even shown to reviewers before
being published, never-mind the “erroneous” claims that he had made an error, and vowed to never
submit another paper to Physical Review. Einstein later confirmed the error and resubmitted his paper
(to a different publisher), this time providing an argument supporting the existence of gravitational
waves [1]. In 2005 it was revealed in a search through the records at the Physical Review that the
until then anonymous referee who rejected Einstein’s paper was one Howard P. Robertson, the same
Robertson of which the famous metric in cosmology shares part of its name.

The properties of gravitational waves, should they even describe a physical process rather than be
merely a mathematical construct (as Rosen thought), has been a difficult and hotly debated topic
permeating the decades after their postulation by Einstein. Richard Feynman was the first to claim
that gravitational waves could transport energy, using his famous “sticky bead argument” [1]. If the
waves could carry energy, then in theory one could devise an experiment that could measure them.
Since then many attempts at measuring gravitational waves have been made, and have largely been
unsuccessful (not unsurprisingly, as their effects are exceptionally small) until quite recently.

In this paper we will derive the formulae describing gravitational waves from the Einstein field
equations, as Einstein himself had done, as well as derive several important features of gravitational
radiation. Namely, we shall discover the quadrupole formula describing the energy contained within
the gravitational waves and apply that formula to a system of two black holes in orbit about one
another. Such a black hole binary is the precise configuration that produced the gravitational waves
detected by the twin LIGO observatories in the United States just this last year: the first direct detection
of gravitational waves.
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We first consider the case of gravitational waves propagating through empty spacetime. To capture
the effects of these waves on the surrounding spacetime, we write the metric as

gµν = ηµν+hµν, (2.1)

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric describing our background spacetime, and
hµν is the perturbation to the metric induced by the gravitational waves. A powerful and important
assumption to make is that the perturbation is very small, i.e.

∣∣hµν∣∣¿ 1. To first order we may raise
and lower indices using the background metric, so that we may define the inverse metric gµν to be

gµν = ηµν−hµν, (2.2)

gµνgµσ = (
ηµν+hµν

)(
ηµσ−hµσ

)= δσν −hσν +hσν −hµνhµσ ≈ δσν .

With this assumption in mind, we may immediately begin calculating the Christoffel symbols

Γσµν =
1

2
gσρ

(
∂µgρν+∂νgρµ−∂ρgµν

)
, ∂ρgµν ≡

∂gµν
∂xρ

. (2.3)

Using the metric (2.1) and its inverse (2.2), we have

Γσµν =
1

2

(
ησρ−hσρ

)[
∂µ(ηρν+hρν)+∂ν(ηρµ+hρµ)−∂ρ(ηµν+hµν)

]
= 1

2

(
∂µhσν +∂νhσµ −ησρ∂ρhµν

)
− 1

2
hσρ

(
∂µhρν+∂νhµρ −∂ρhµν

)
. (2.4)

The Riemann curvature tensor is defined by

Rσ
ρµν = ∂µΓσρν−∂νΓσρµ+ΓσαµΓαρν−ΓσανΓαρµ, (2.5)

and the Ricci curvature tensor by
Rρν = Rσ

ρσν. (2.6)

Putting the Christoffel symbols (2.4) into (2.6), we have to first order1

Rρν = 1

2

(
∂σ∂ρhσν +∂ν∂σhσρ −∂σ∂σhρν−∂ν∂ρh

)
(2.7)

where we have written
h = hσσ. (2.8)

Before we write out the full Einstein equations, there are a number of simplifications we can make.
First, define the trace-reversed perturbation

h̃µν = hµν− 1

2
ηµνh. (2.9)

We notice that under a change of coordinates given by

x ′µ = xµ+ξµ, (2.10)

the trace-reversed perturbation transforms as [2]

h̃′
µν = h̃µν+∂µξν+∂νξµ−ηµν∂σξσ. (2.11)

If we require that ξµ satisfies
∂σ∂

σξµ =−∂σh̃σµ, (2.12)

1See Appendix A for the derivation, including terms up to second order.
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then we find
∂νh̃′µν = 0. (2.13)

This condition (2.13) is called the Lorenz gauge2 [2], which can be equivalently written

∂νhµν = 1

2
∂µh. (2.14)

This allows us to greatly simplify the expression (2.7) for the Ricci tensor. We find

Rρν = 1

2

(
∂σ∂ρhσν +∂ν∂σhσρ −∂σ∂σhρν−∂ν∂ρh

)
= 1

2

[
�
����

∂ρ

(
1

2
∂νh

)
+
�

����
∂ν

(
1

2
∂ρh

)
−∂σ∂σhρν−����∂ν∂ρh

]
=−1

2
∂σ∂

σhρν. (2.15)

The Ricci scalar is simply

R ≡ ηρνRρν =−1

2
∂σ∂

σh, (2.16)

and thus the Einstein tensor is

Gρν ≡ Rρν− 1

2
ηρνR =−1

2
∂σ∂

σ

(
hρν− 1

2
ηρνh

)
=−1

2
∂σ∂

σh̃ρν. (2.17)

Finally, the Einstein field equations read

Gµν = 8πTµν, (2.18)

or
�h̃µν =−16πTµν, (2.19)

in geometrized units (G = c = 1) where �= ∂σ∂σ is the d’Alembert operator. In a vacuum, Eq. (2.19) is
the familiar wave equation (

∇2 − ∂2

∂t 2

)
h̃µν = 0, (2.20)

and Eq. (2.19) is the wave equation with a source. In other words, the trace-reversed perturbation satis-
fies a wave equation! This is the phenomena of gravitational waves: ripples in spacetime propagating
through space at the speed of light. The simplest solution of (2.20) is a plane wave [3]

h̃µν = Aµνe i kαxα , kα = (ω,k1,k2,k3) (2.21)

with frequency ω. Aµν is a 4x4 symmetric constant tensor giving the amplitudes of each component of
the wave [4], and is also sometimes called the polarization tensor [3]. The Lorenz gauge condition on
the plane wave solution gives

∂νh̃µν = ∂ν
(

Aµνe i kαxα
)
= i kνAµνe i kαxα = 0

→ kνAµν = 0. (2.22)

So, the amplitudes are orthogonal to the direction of oscillation, i.e., the waves are transverse. Eq.
(2.20) provides a further freedom to set any four components of the h̃µν equal to zero [4]. By far the
most common and convenient choice of these are

h̃0µ = 0 (transverse)

h̃µµ = 0 (traceless)

2The majority of textbooks (with the exception of [2]) incorrectly label this as the Lorentz gauge. Beware of the confusion.
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For this reason, this particular choice of coordinates is called the transverse-traceless (TT) gauge [5].
An immediate result of using the transverse-traceless gauge is that Eq. (2.9) gives

h̃TT
µν = hTT

µν . (2.23)

So the trace-reversed perturbation coincides with the metric perturbation in these particular coordi-
nates. The Lorenz and TT gauge use up all of the coordinate-freedoms, leaving the plane wave solution
with only two independent components such that

Aµν = h+


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

+h×


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (2.24)

This reveals the two independent polarizations of gravitational waves: plus (+) and cross (×). The
coefficients h+, h× are the amplitudes of each respective polarization and may be any function of t −z
for waves propagating in the z direction. The general solution is a linear combination of the two. Also
of interest is the vacuum wave equation for the plane wave solution, which reads

�h̃µν = kαkαh̃µν = 0 → kαkα = 0 (2.25)

I.e., kα is null, or ω2 = k2; the wave has velocity equal to that of light.

3 SOURCE EMISSION OF GRAVITATIONAL WAVES

We now turn to the problem of solving Eq. (2.19), the Einstein equations for a linearized gravitational
wave to first order with a source:

∂σ∂
σh̃µν =−16πTµν. (3.1)

The approach to obtaining a solution is as follows: we will first derive an expression for h̃µν to first order
by solving Eq. 3.1, and then use that solution in a second iteration through the Einstein equations up
to second order to determine the energy contained in the waves themselves. This approach is justified
by the fact that this approximation is valid to an error of the order of the amplitude of the gravitational
waves, but for the concept of a gravitational wave to make any sense they must be of incredibly small
scales such that for all practical purposes the errors are negligible. Later we will see that the energy
contained in a gravitational wave must be thought of in an averaged, “smeared-out” sense, which
will introduce an error on the order of the ratio of the reduced wavelength of the gravitational wave
(λ/2π) to the background radius of curvature. Again, such an error is so small that for any conceivable
purpose it may be neglected [5].

Focusing only on waves emitted by the source (i.e., excluding “ingoing” waves), Eq. 3.1 is solved by

h̃µν(t ,~x) = 4
∫

all space

Tµν
(
t − ∣∣~x −~x ′∣∣)
|~x −~x ′| d 3x ′, (3.2)

where~x is the position 3-vector,
∣∣~x −~x ′∣∣ denotes taking the magnitude of the difference of the position

vectors, d 3x ′ = d x ′1d x ′2d x ′3, and the stress-energy-momentum tensor Tµν is taken to be evaluated at
the retarded time3 t − ∣∣~x −~x ′∣∣. The form of such a solution is well-known from the study of wave equa-
tions with sources, as is true in the analogy with electrodynamics in the emission of electromagnetic
radiation by sources [6]. In order to solve (3.2), we will make the following simplifying assumption
commonly known as the “slow-motion approximation” [5]:

3In c 6= 1 units, the retarded time has the form t − ∣∣~x −~x′∣∣/c.
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For a source contained within a radius Rsource with mean internal velocity v and angular
velocity ω= v/Rsource, then the “characteristic reduced wavelength” λred =λ/2π= 1/ω of
the radiation is assumed to be long compared to the source’s size:

λred À Rsource or Rsource/λred ¿ 1.

This is the same as the statement
v ¿ 1.

In the case of binary black holes orbiting at ∼ 0.1c, as we will later investigate, this
approximation turns out to be excellent.

Defining our coordinate system to be centered on the source with the origin contained within Rsource,
then at large radial distances from the source

r = |~x|À Rsource =
∣∣~x ′∣∣. (3.3)

The integral (3.2) may then be expanded in powers of~x ′/r , making use of the slow-motion approxima-
tion [5]:

h̃µν(t ,~x) = 4

r

∫
Tµν

(
t − r,~x ′)d 3x ′+O

[
x j

r 2λred

∫
x ′ j Tµν

(
t − r,~x ′)d 3x ′

]
. (3.4)

Note that in the transverse-traceless (TT) gauge, only the spatial components of h̃µν, h̃i j , are nonzero.
Recall also that the stress-energy-momentum tensor has the conservation law

∂νT µν = 0. (3.5)

From this conservation law we may construct several useful identities [5]:

∂0∂νT µν = 0

→ ∂0∂0T µ0 +∂0∂i T µi = 0. (3.6)

In particular for µ= 0:

∂0∂0T 00 =−∂0∂i T 0i , (3.7)

=−∂i∂0T i 0. (3.8)

(3.7) and (3.8) are merely related by the symmetry of T µν and the fact that partial derivatives commute.
Further, consider

∂µ∂νT µν = 0

→ ∂0∂νT 0ν+∂i∂νT iν = 0

→ ∂0∂0T 00 +∂0∂i T 0i +∂i∂0T i 0 +∂i∂ j T i j = 0

→ ∂0∂0T 00 −2∂0∂0T 00 +∂i∂ j T i j = 0 (by (3.7) and (3.8))

→ ∂0∂0 = ∂i∂ j T i j . (3.9)

Now, consider the quantity

∂k∂l

(
T kl xi x j

)
= ∂k

(
∂l T kl xi x j +T kl (δi

l x j +δ j
l xi

)
= ∂k∂l T kl xi x j +∂l T kl (δi

k x j +δ j
l xi )+∂k

(
T ki x j +T k j xi

)
. (3.10)

Consider for a moment the second term. By the product rule

∂l

[
T kl

(
δi

k x j +δ j
k xi

)]
= ∂l T kl

(
δi

k x j +δ j
k xi

)
+T kl

(
δi

kδ
j
l +δ

j
kδ

i
l

)
→ ∂l T kl

(
δi

k x j +δ j
k xi

)
= ∂l

(
T i l x j +T j l xi

)
−2T i j . (3.11)
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Thus (3.10) becomes

∂k∂l

(
T kl xi x j

)
= ∂k∂l T kl xi x j +2∂k

(
T ki x j +T k j xi

)
−2T i j . (3.12)

Finally, consider the expression

∂0∂0

(
T 00xi x j

)
= ∂0∂0T 00xi x j

= ∂k∂l T kl xi x j (by (3.9))

= ∂k∂l

(
T kl xi x j

)
−2∂k

(
T ki x j +T k j xi

)
+2T i j . (by (3.12))

We define the second moment of the mass distribution according to [5] as

I i j (t ) ≡
∫

T 00xi x j d 3x. (3.13)

We may then rewrite (by (3.12)) as

∂2I i j

∂t 2 = d 2I i j

d t 2 = ∂0∂0

∫
T 00xi x j d 3x

=
∫
∂0∂0

(
T 00xi x j

)
d 3x

=
∫
∂k∂l

(
T kl xi x j

)
d 3x −2

∫
∂k

(
T ki x j +T k j xi

)
d 3x +2

∫
T i j d 3x. (3.14)

The first two integrals may be rewritten using Gauss’s theorem as surface integrals in which we take
the surface out to infinity. Assuming the source is bounded so that T i j is only defined in some finite
region of space near the origin, these surface integrals vanish, and we are left with∫

T i j d 3x = 1

2

d 2I

d t 2 . (3.15)

Then, by substitution of (3.15) into (3.4) and dropping the higher order terms (i.e., we assume the
observer is at a distance much larger than the reduced wavelength r Àλred À Rsource), we have

h̃i j (t ,~x) = 2

r

d 2Ii j (t − r )

d t 2 . (3.16)

The quantities Ii j , however, are not able to be directly computed by an external observer [5]. However,
if we define the reduced quadrupole moment in terms of the second mass moment by

Qi j ≡ Ii j − 1

3
δi j I k

k =
∫

T 00
(

xi x j − 1

3
δi j r 2

)
d 3x, (3.17)

where r 2 = xi xi , then conveniently Qi j and Ii j are identical in the TT gauge [5]. We may then write4

hTT
i j (t ,~x) = 2

r
Q̈TT

i j (t − r ) (3.18)

where we recall in the TT gauge h̃TT
i j = hTT

i j , and the reduced quadrupole moment is taken to be
evaluated at the retarded time t − r . Eq. (3.18) is the famous quadrupole formula, first derived by
Einstein in 1918 [3]. Thus the gravitational waves emitted by some slow-moving source of mass-energy-
density T 00 = ρ is proportional to the second time derivative of the source’s quadrupole moment. The
quadrupole moment may be calculated in exactly the same way as one would in Newtonian theory; as
the coefficient in the quadrupole term of a multipole expansion of the Newtonian potential [2]. Of
course, it makes sense that gravitational radiation must be of at least quadrupole nature or higher:
gravitational monopoles cannot exist by conservation of mass, and gravitational dipoles cannot exist
by conservation of momentum (i.e., there is no such thing as a negative mass). In electromagnetism,
however, there may be dipole radiation because there do exist positive and negative electric charges.

4For even more compactness, we have introduced the dot notation for differentiation with respect to time: ẋ ≡ d x/d t .
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As Richard Feynman’s “sticky-bead experiment” had argued, gravitational waves, like their electromag-
netic analogs, may transport and deposit energy to their surroundings. This has many huge physical
implications. For example, a system emitting gravitational waves like a binary star or black hole system
is effectively losing energy via the production of gravitational radiation. First, this implies that the
binary’s orbital velocity must decrease, by conservation of energy, and so eventually the two bodies
will merge! Second, the radiation leaving the binaries may transport that energy to Earth, where we
may construct some form of detector to measure the energy in these gravitational waves and identify
such an event. As gravitational waves travel unimpeded through the universe, this presents a wealth of
possibilities for astronomers to utilize gravitational radiation in observing the universe beyond what
is possible in the electromagnetic spectrum; for example, “seeing” beyond the cosmic microwave
background radiation and into the earliest moments of the universe.

In this section we will derive an expression for the energy contained in a gravitational wave. We
begin by returning to the Einstein field equations:

Gρν ≡ Rρν− 1

2
gρνR = 8πTρν. (4.1)

In the previous section, we solved these equations for a linearized gravitational wave to first order
to obtain an expression for the gravitational waves hi j . In only considering the equations to first
order, we have ignored the possibility that gravitational waves themselves are a source of curvature.
To capture this, we must consider the equations to second order. Mimicking the notation used in [2],
we write the Ricci tensor as a sum of a component only involving first order contributions from hµν
and a component involving terms of second order:

Rρν = R(1)
ρν +R(2)

ρν , (4.2)

where R(1)
ρν is given by Eq. (2.7) and R(2)

ρν is given by5

R(2)
ρν =

1

2

(
hσλ∂ρ∂νhσλ+hσλ∂σ∂λhρν−hσλ∂λ∂νhρσ−hσλ∂λ∂ρhνσ

+ ∂σhσλ∂λhρν+∂σhλν∂σhλρ−∂σhλν∂λhσρ−∂σhσλ∂νhρλ−∂σhσλ∂ρhλν
)

(4.3)

+ 1

4

(
∂ρhσλ∂νhσλ+∂λh∂ρhλν +∂λh∂νhλρ −∂λh∂λhρν

)
.

This allows us to write Eq. (4.1) as(
R(1)
ρν +R(2)

ρν

)
− 1

2
ηρν

(
R(1) +R(2))= 8πTρν. (4.4)

Moving some terms around, we rewrite Eq. (4.4) as

R(1)
ρν −

1

2
ηρνR(1) = 8π

(
Tρν+ tρν

)
, (4.5)

where we have defined

tρν ≡− 1

8π

(
R(2)
ρν −

1

2
ηρνR(2)

)
. (4.6)

Eq. (4.5) is the same linearized equation we solved to obtain Eq. (3.18), except that now we have added
an extra term to the right hand side that depends on the second order effects of the metric perturbation.
In the way that we have written Eq. (4.5), it is as if the gravitational waves are themselves a source of
curvature. The quantities tρν are conventionally called the energy-momentum pseudotensor of the
gravitational field, and describe the effects of the gravitational waves themselves on the curvature of
the spacetime surrounding them.

5See Appendix A for the derivation.
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There are several undesirable properties of the pseudotensor; namely, as the name suggests, it is not
a tensor, and it is also not invariant under gauge transformations [2]. The former is not particularly an
issue, and the latter may be overcome by instead thinking of the energy-momentum pseudotensor as
averaged over a spacetime volume of sides larger than the wavelength of the gravitational waves. The
notation used in this averaging is universally denoted by angle brackets,

tρν =
〈
− 1

8π

(
R(2)
ρν −

1

2
ηρνR(2)

)〉
. (4.7)

The averaging may be thought of as “smearing out” the energy-momentum of the gravitational waves
over enough of a region (i.e., larger than λ, but smaller than the radius of the background curvature)
that the curvature induced by the gravitational waves may be physically described in a gauge-invariant
manner [2]. The smaller the wavelength of the gravitational wave is in comparison to the background
curvature, the better this approximation becomes, becoming arbitrarily accurate in the limit of a very
distant observer in an asymptotically flat spacetime [4]. For a source emitting gravitational radiation
with a well-defined cyclic period, this amounts to simply averaging over the period of the source.

To derive an expression for tρν, we must calculate Eq. (4.6) given Eq. (4.3), and then average
according to Eq. (4.7). We find, in the TT gauge6,

tρν = 1

32π

〈
∂ρhTT

σλ∂νhσλTT

〉
. (4.8)

If one were to conduct the derivation without assuming a gauge, they would find

tρν = 1

32π

〈
∂ρhσλ∂νhσλ− 1

2
∂ρh∂νh −∂σhσλ∂ρhνλ−∂σhσλ∂νhρλ

〉
, (4.9)

which in fact happens to be gauge invariant [2]. Using the conditions of the TT gauge, it can be seen
that (4.9) does in fact reduce to (4.8), as the second term includes a trace and the last two divergences,
and so only the first term survives.

We now have a gauge-invariant quantity that takes a relatively simple form in a particular choice (TT
gauge) and describes the energy stored in the gravitational waves. We can utilize this to determine the
luminosity, or energy per unit time transported in the waves. We can determine this from the energy
flux t0r in the radial direction, averaged over the surface of a sphere far away from and containing the
source. First we find an expression for t0r using Eq. (4.8) and Eq. (3.18). Noting that the quadrupole
moment only depends on the time t − r , we can use the chain rule to write

t0r = 1

32π

〈
∂0hTT

ρσ∂r hρσT T

〉
= 1

32π

〈(
2

r

...
Q

TT
i j

)(
−2

r

...
Q

i j
TT −

2

r 2

...
Q

i j
TT

)〉
≈− 1

8πr 2

〈...
Q

TT
i j

...
Q

i j
TT

〉
, (4.10)

where in the last step we have used the fact that we are considering the waves at a distance very
far from the source. Unfortunately, we might not necessarily know how to explicitly express the
quadrupole moment in the TT gauge. We can, however, calculate the regular reduced quadrupole
moment via (3.17) quite easily. Thus we want to express (4.10) in terms of Qi j , not QTT

i j . We may do so
using the projection tensor defined in [2],

Pi j = δi j −ni n j , (4.11)

where ni is a normal vector in the i direction and δi j is the usual Kronecker delta = 1 if i = j and 0
otherwise. The transverse-traceless part of a tensor may then be expressed in terms of the projection

6See Appendix B for the derivation.
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tensor and the original tensor Xi j as [2]

X TT
i j =

(
P k

i P l
j −

1

2
Pi j P kl

)
Xkl , (4.12)

which allows us to write, after a considerable amount of tedious algebra (involving 64 terms of
Kronecker deltas),

...
Q

TT
i j

...
Q

i j
TT = ...

Q i j
...
Q

i j −2
...
Q

j
i

...
Q

i k
n j nk +

1

2

...
Q

i j ...
Q

kl
ni n j nk nl . (4.13)

The power radiated by the gravitational waves can now be calculated from

dE

d t
=

∫
S2∞

t0r r 2dΩ

=− 1

8π

∫
S2∞

〈...
Q

TT
i j

...
Q

i j
TT

〉
dΩ

=− 1

8π

∫
S2∞

〈
...
Q i j

...
Q

i j −2
...
Q

j
i

...
Q

i k
n j nk +

1

2

...
Q

i j ...
Q

kl
ni n j nk nl

〉
dΩ, (4.14)

where the integral is taken over a sphere at infinity and dΩ= sinθdθdφ is the infinitesimal solid angle.
Since the quadrupole moments only depend on t − r , they are constant on the surface of the sphere
and may be taken outside of the integral:

dE

d t
=− 1

8π

[〈...
Q i j

...
Q

i j 〉∫
S2∞

dΩ−2
〈...

Q
j
i

...
Q

i k〉∫
S2∞

n j nk dΩ+ 1

2

〈...
Q

i j ...
Q

kl 〉∫
S2∞

ni n j nk nl dΩ

]
. (4.15)

Using the identities for averages over the surface of a sphere [2, 5, 6],∫
dΩ= 4π,∫

ni n j dΩ= 4π

3
δi j , (4.16)∫

ni n j nk nl dΩ= 4π

15

(
δi jδkl +δi kδ j l +δi lδ j k

)
,

we may simplify Eq. (4.15) as follows:

dE

d t
=− 1

8π

[
4π

〈...
Q i j

...
Q

i j 〉− 8π

3

〈...
Q

j
i

...
Q

i k〉(
δ j k

)+ 2π

15

〈...
Q

i j ...
Q

kl 〉(
δi jδkl +δi kδ j l +δi lδ j k

)]
=− 1

8π

[
4π

〈...
Q i j

...
Q

i j 〉− 8π

3

〈...
Q i j

...
Q

i j 〉+ 2π

15

(〈...
Q

i j ...
Q

kl 〉(
δi jδkl +δi kδ j l +δi lδ j k

))]
=−2π

8π

[(
2− 4

3

)〈...
Q i j

...
Q

i j 〉+ 1

15

〈...
Q

...
Q +2

...
Q i j

...
Q

i j 〉]
=−1

4

(
2− 4

3
+ 2

15

)〈...
Q i j

...
Q

i j 〉
(since Qi j is traceless)

=−1

5

〈...
Q i j

...
Q

i j 〉
. (4.17)

Thus, the luminosity of the gravitational waves is

LGW =−dE

d t
= 1

5

〈...
Q i j

...
Q

i j 〉
. (4.18)

We now have an expression for the energy emitted by a slow-moving matter distribution in the form of
gravitational radiation! It is proportional to the square of the third time derivative of the quadrupole
moment of that matter distribution. In the next section, we will utilize this formula to determine
the energy lost in a binary system of black holes and compare our theoretical prediction to the
measurements made by the LIGO observatory.

9
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5 GRAVITATIONAL RADIATION BY BINARY BLACK HOLES

We shall follow the construction of a binary black hole system as presented in [7]. Consider a system
consisting of two black holes of unequal masses M1 and M2 locked together in orbit about one another.
Placing the origin of our coordinates at the barycenter of the two masses, we define the spacial position
vectors of the two black holes as~r1(t) and~r2(t ), as well as the velocities of the two bodies ~v1 and ~v2.
The magnitudes of these vectors are denoted simply be the same variable without a vector arrow. Let
the orbit of the black holes be in the x − y plane. Since both stars must make a complete orbit in the
same amount of time, which we denote as the period P , we have

P = v1

2πr1
= v2

2πr2
⇒ r1 = v1

v2
r2. (5.1)

Balancing the centripetal force with the Newtonian gravitational force for the first black hole, which is
reasonable to do in the non-relativistic limit on which the slow-motion approximation was developed,
we find the relation

M1v2
1

r1
= M1M2

(r1 + r2)
⇒ v2

1 = M1

(r1 + r2)2 r2. (5.2)

and likewise for v2. Recall that we are still working in units in which G = c = 1. Dividing the expressions
for v1 and v2 and substituting (5.1), we find that r1 = (M2/M1)r2. Then defining the separation vector
~r ≡~r1 −~r2, which has length r = r1 + r2, we have

~r1 = M2

M1 +M2
~r , ~r2 =− M1

M1 +M2
~r . (5.3)

Likewise, we can rewrite the velocities in a similar manner using (5.1):

~v1 = M2

M1 +M2
~v , ~v2 =− M1

M1 +M2
~v , (5.4)

where here ~v ≡~v1 −~v2 is the relative velocity vector. A schematic relating these basic properties of the
orbital configuration is given in Figure 5.1. A convenient quantity to define is the symmetric mass
ratio7, which is given by

η≡ M1M2

(M1 +M2)2 . (5.5)

7Do not confuse this η with the contraction of the Minkowski metric with itself, η= ηµνηµν, which equals four.

x

y

~r1

~r2

~v1

~v2

M1

M2

✓2

x

y

~r2

✓2

M

M

~v

~v

~r1

Figure 5.1: Schematic of a binary black hole system with circular orbits and (left) unequal, (right) equal, masses.
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5 GRAVITATIONAL RADIATION BY BINARY BLACK HOLES

We can now write the mass density of the binary system as

T 00(t ,~x) = ρ(r,~x) = M1δ
3(~r −~r1)+M2δ

3(~r −~r2), (5.6)

where δ3(~r −~r1) is the Dirac delta function centered at position~r1. Explicitly, the positions of the two
black holes are

~r1 = (r1 cosθ, r1 sinθ, 0), ~r2 =−(r2 cosθ, r2 sinθ, 0), (5.7)

where θ is the azimuthal angle for the first body, and is sometimes called the anomaly. Using Kepler’s
third law we can write the period P as

P 2 = 4π2

M1 +M2
(r1 + r2)3 ⇒ P = 2π

(
r 3

M

)1/2

, (5.8)

where r = r1 + r2 and M = M1 +M2. The angular velocity of the orbit is

Ω= 2π

P
=

(
M

r 3

)1/2

, (5.9)

allowing us to write the positions of the two black holes as

~r1 = (r1 cosΩt , r1 sinΩt , 0), ~r2 =−(r2 cosΩt , r2 sinΩt , 0). (5.10)

The density is now

ρ(t ,~x) = M1δ(x − r1 cosΩt )δ(y − r1 sinΩt )δ(z)+M2δ(x − r2 cosΩt )δ(y − r2 sinΩt )δ(z). (5.11)

The delta functions make the quadrupole moment Eq. (3.17) easy to calculate. The components are

Q11 = M1

(
r 2

1 cos2Ωt − 1

3
r 2

1

)
+M2

(
r 2

2 cos2Ωt − 1

3
r 2

2

)
=

(
M1M 2

2

(M1 +M2)2 + M2M 2
1

(M1 +M2)2

)
r 2

(
cos2Ωt − 1

3

)
(by Eq. (5.3))

= ηMr 2
(
cos2Ωt − 1

3

)
= 1

2
ηMr 2

(
1

3
+cos(2Ωt )

)
. (5.12)

Likewise

Q22 = ηMr 2
(
sin2Ωt − 1

3

)
= 1

2
ηMr 2

(
1

3
−cos(2Ωt )

)
, (5.13)

Q33 =−1

3
(M1r 2

1 +M2r 2
2 ) =−ηMr 2/3. (5.14)

Any off-diagonal terms involving z will vanish, thus the only surviving off-diagonal term is

Q12 =Q21 = M1r 2
1 cosΩt sinΩt +M2r 2

2 cosΩt sinΩt

= ηMr 2 cosΩt sinΩt = 1

2
ηMr 2 sin(2Ωt ). (5.15)

Putting these together, we may construct the quadrupole moment tensor for a binary black hole
system of unequal masses but circular orbits:

Qi j = 1

2
ηMr 2

1
3 +cos(2Ωt ) sin(2Ωt ) 0

sin(2Ωt ) 1
3 −cos(2Ωt ) 0

0 0 −2/3

 . (5.16)

11
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Taking two time derivatives of Eq. (5.16), we have

Q̈i j = 2ηMr 2Ω2

−cos(2Ωt ) −sin(2Ωt ) 0
−sin(2Ωt ) cos(2Ωt ) 0

0 0 0

 . (5.17)

With the quadrupole moment in hand, we can now write down the metric perturbation from the
quadrupole formula Eq. (3.16), since the second time derivative of Qi j and Ii j are identical:

h̃i j = 4ηMr 2Ω2

R

−cos[2Ω(t − r )] −sin[2Ω(t − r )] 0
−sin[2Ω(t − r )] cos[2Ω(t − r )] 0

0 0 0

 , (5.18)

where R is the observer’s distance from the source (for the approximation to be valid, R À r ). From
this, we can see that the gravitational waves have a frequency twice that of the orbit of the black holes.
Thus in each orbit, the black holes emit two full wavelengths of gravitational radiation. This is another
reminder of the quadrupole nature of gravitational waves; when we average the luminosity over the
period of the black holes, we will obtain two periods worth of gravitational radiation.

Taking a third time derivative of Eq. (5.16) gives

...
Q i j = 4ηMr 2Ω3

 sin(2Ωt ) −cos(2Ωt ) 0
−cos(2Ωt ) −sin(2Ωt ) 0

0 0 0

 . (5.19)

Then

...
Q i j

...
Q

i j = (
4ηMr 2Ω3)2 (

2sin2(2Ωt )+2cos2(2Ωt )
)= 32η2M 2r 4Ω6, (5.20)

and from Eq. (4.18), the luminosity of gravitational waves from a binary black hole system may be
determined:

LGW = 32η2M 2r 4Ω6

5
= 32(M1M2)2(M1 +M2)

5r 5 . (5.21)

Eq. (5.21) gives the amount of energy leaving the binary system per unit time as the black holes orbit
each other and produce gravitational radiation. Were one to have held on to the factor of G/c4 on the
right-hand side of the Einstein field equations, at this point in the game they would find the expression
for the luminosity to be

LGW = 32G4

5c5

(M1M2)2(M1 +M2)

r 5 . (5.22)

We reinstate G , c 6= 1 units for practical purposes. There are several key results that we can derive from
this. First, this loss of energy results in the two black holes moving closer to one another, a process
called inspiral. If we think of this energy as coming from the total energy of the black hole orbits, then
by using the chain rule the rate of change of the separation may be found by

dr

d t
= dr

dE

dE

d t
=−

(
2r 2

GM1M2

)
32G4

5c5

(M1M2)2(M1 +M2)

r 5 =−64G3

5c5

M1M2(M1 +M2)

r 3 , (5.23)

where we have used the virial theorem to obtain E =−1
2U for a circular binary, where U =GM1M2/r

is the Newtonian gravitational potential energy. The negative sign in Eq. (5.23) indicates that the orbit
is shrinking. It will continue to shrink until the black holes merge. The time it takes for this to happen
given some initial orbital separation r0 can be found by simply separating Eq. (5.23) and integrating:

∆tmerge = 1

α

∫ 0

r0

r 3dr =− r 4
0

4α
, α≡−64G3M1M2(M1 +M2)

5c5 . (5.24)
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5 GRAVITATIONAL RADIATION BY BINARY BLACK HOLES

As the black holes spiral inwards, the angular frequency of the orbit increases. We define ω≡ 1/P to be
the orbital frequency of the binary, so then f ≡ 2ω is the frequency of the gravitational waves. From
Kepler’s third law we may relate f to r by

P 2 = 1

ω2 = 4π2

GM
r 3 ⇒ f = 2ω= 1

π

p
GMr−3/2. (5.25)

Then, to find the rate at which the frequency increases, we may use the chain rule and Eqs. (5.23) and
(5.25), yielding

ḟ = d f

dr

dr

d t
=− 3

2π

p
GM

r 5/2

[
−64G3

5c5

M1M2(M1 +M2)

r 3

]
= 96G7/2

5πc5

M1M2(M1 +M2)3/2

r 11/2
= 96G7/2

5πc5

(
π2

GM

)11/6

f 11/3M1M2(M1 +M2)3/2

= 96π8/3G5/3

5c5

M1M2

(M1 +M2)1/3
f 11/3. (5.26)

We define the chirp mass [7] as

M≡ η3/5M =
(

M 3
1 M 3

2

M1 +M2

)1/5

, (5.27)

so that we can write the change in the frequency as

ḟ = 96π8/3

5

(
GM

c3

)5/3

f 11/3. (5.28)

From Eq. (5.18) we can now write the amplitude of the gravitational wave as

h0 = 4GηMr 2Ω2

c4R
= 4η

c4R

(GM)2

r
= 4(GM)2η

c4R

(
π2

GM

)1/3

f 2/3 (5.29)

= 4π2/3G5/3

c4R

(
M1M2

(M1 +M2)1/3

)
f 2/3, (5.30)

or, in terms of the chirp mass,

h0 = 4π2/3 (GM)5/3

c4R
f 2/3. (5.31)

With the essential formulae describing the radiation of gravitational waves from a binary black hole
system now at hand, we will apply our formula to the two cases in which gravitational waves have
been detected on Earth so far.

5.1 THE HULSE-TAYLOR PULSAR BINARY

The first observational evidence of gravitational radiation came in 1974 by Joseph Taylor and Russel
Hulse’s observations of the binary neutron star system PSR 1913+16. Hulse and Taylor’s observations
involved careful measurements of the orbital period of the two stars, using the rapid pulsations of the
neutron stars as a clock. The timings of the pulse when measured at Earth were sometimes sooner
than expected, and sometimes later than expected. This could be explained if the pulsar were in orbit
about a companion star (which also happens to be a neutron star), with the periodicity in the pulsar
timings resultant from the orbital modulation. Hulse and Taylor collected painstakingly accurate
measurements of the orbital period for several years, noticing that over time the orbit of the neutron
stars was slowly contracting. As it turns out, the contraction is precisely in agreement with what is
expected were the neutron stars emitting gravitational radiation as they orbited one another (the
agreement is with the equivalent of Eq. (5.23), generalized to elliptical orbits). With decades of data
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5 GRAVITATIONAL RADIATION BY BINARY BLACK HOLES

Figure 5.2: Over 30 years of measurements of
the pulsar binary system PSR 1913+16. The
shift in the periastron (position of closest ap-
proach to the companion star) is plotted on
the vertical axis. This shirt corresponds to
the shrinking of the orbit as the neutron stars
spiral inwards, losing their orbital energy in
the emission of gravitational waves. Just how
much gravitational waves can be predicted
from relativity (as we did in the simplified
example of circular binaries) - the predic-
tion precisely describes the observed data
to within 0.2% [8].

now in our possession, the agreement of this system to general relativity has been measured to within
2%! [8]. The incredible agreement between the data and the prediction from relativity is displayed
in Figure 5.2. This work earned Hulse and Taylor the 1993 Nobel Prize in Physics, and was the first
indirect evidence supporting the existence of gravitational waves.

5.2 LIGO OBSERVATIONS OF A BLACK HOLE MERGER

The Laser Interferometer Gravitational-Wave Observatory, or LIGO, is a pair of 4 km arm-length
Michelson interferometers designed for the sole purpose of detecting gravitational waves. One of the
twin interferometers is located in Hanford, Washington (LIGO Observatory 4k or LHO 4k, or simply
H1), and the other in Livingston, Lousiana (LIGO Livingston Observatory 4k, or LLO 4k, or simply L1).
The observatories rely in the principle of interferometry to detect gravitational waves: a high-power
laser is sent from a source through a beam-splitter that sends half the beam down each of the 4 km
arms of the interferometers, which are then each reflected by a mirror at the ends of the arms, and
return back to the beam-splitter where the laser is recombined and directed to a photodetector that
measures any interference pattern between the two beams. Should a gravitational wave pass through
the experiment, one arm of the detector would be elongated and the other compressed, altering
the light-travel-time of the two lasers in the arms, and thus altering the interference pattern at the
photodetector. The ‘strain’ on the arms can be measured from this, although it is quite difficult: the
arm-length only changes by a size much smaller than the diameter of an atomic nucleus!

Using equations we have already derived, we can estimate the shape of such a strain on the detector
for the case of the binary black hole system previously discussed. Separating and integrating (5.28),
we find the expression for the gravitational wave frequency to be

f (t ) =
(

f −8/3
0 − 256π8/3

5

(
GM

c3

)5/3

t

)−3/8

, (5.32)

where f0 =Ω0/π=
√

GM/r 3
0 /π is the initial gravitational wave frequency. Then, with the expression

(5.31) for the amplitude, we can create the waveform of the gravitational waves:

h(t ) = h0(t )cos
[
2π f (t )t +π ḟ (t )t 2] (5.33)
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Figure 5.3: (Left) Plot of the binary black hole waveform as a function of time, as well as the black hole separation
and relative velocity, all as calculated from our slow-motion approximation to the linearized theory of general
relativity. (Right) Computer simulations solving Einstein’s equations numerically for the waveform of coalescing
binary black holes [9]. Note the strength of the velocities, especially right before the merger takes place (as well
as the shape of the waveform) - here it becomes clear that our approximation is beginning to break down.

The waveform (5.33) describes the time evolution of the gravitational waves passing through the
detector in terms of their amplitude (5.31), frequency (5.32), and rate of change of the frequency
(5.28). The amplitude of the gravitational waves is proportional to the strain experienced by the
interferometer arms elongating and contracting. To see what this waveform looks like, we use the
measured parameters for the black holes observed in the event GW150914 at LIGO in September 2015
[9]. This was the first direct detection of gravitational waves. The parameters for the binary are:

M1 = 36+5
−4M¯, M2 = 29+4

−4M¯

r0 = 4Rs = 8GM

c2 , R = 410+160
−180 Mpc. (5.34)

From these parameters, we find the chirp mass to be M= 28M¯, the luminosity of the gravitational
waves to be LGW = 4.3×1054 erg/s ([9] finds 3.6+0.5

−0.4×1056 erg/s using numerical relativity calculations),
and the time to merge to be ∆tmerge = 0.104 s. We can also use Eq. (5.23) to obtain the time evolution
of the black hole separation and relative velocities. These quantities, along with the waveform, are
shown in Figure 5.3 alongside the results obtained by [9] using more accurate numerical calculations.
The observed data from both L1 and L2 is displayed in Figure 5.4. Our expressions for the waveforms
can be seen to be remarkably accurate even at relatively high velocities (up to a third the speed of light
just before merging!), despite our equations being derived from the assumption that the source is
slow-moving.

The observations from LIGO, coupled with the discovery by Hulse and Taylor, present conclusive
evidence that gravitational waves are in fact a physical property of our universe. Even today we are
still finding new evidence matching the predictions of Einstein a hundred years ago. The general
theory of relativity is truly an incredible achievement of the human mind to not only withstand
this test of time, but also to match the experiments so beautifully. With the ability to make direct
observations of gravitational waves now at our disposal, the field of gravitational wave astronomy
has been inaugurated. With each discovery comes even more potential for the future. Perhaps we
can use gravitational waves to see beyond the cosmic microwave background radiation and into the
earliest moments after the big bang. Perhaps we may be able to probe the inner workings of black
holes through the ripples in space they create. It is these prospects and more that make it an exciting
time to be a part of humanity’s quest to understand the universe.
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Figure 5.4: Observed strain on the interferometer arms due to the gravitational waves [9].
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A

The following is an exercise one should do once, and once only, in their life. Begin with the
expression for the Christoffel symbols found in (2.4):

Γσµν =
1

2

(
∂µhσν +∂νhσµ −ησρ∂ρhµν

)
− 1

2
hσρ

(
∂µhρν+∂νhµρ −∂ρhµν

)
. (A.1)

We substitute the Christoffel symbols directly into the definition of the Ricci curvature tensor,

Rρν = ∂σΓσρν−∂νΓσρσ+ΓσασΓαρν−ΓσανΓαρσ, (A.2)

yielding

Rρν = 1

2

[
∂σ∂ρhσν +∂σ∂νhσρ −∂σησλ∂λhρν

]
− 1

2
∂σ

[
hσλ

(
∂ρhλν+∂νhρλ−∂λhρν

)]
− 1

2

[
∂ν∂ρhσσ+∂ν∂σhσρ −∂νησλ∂λhρσ

]
+ 1

2
∂ν

[
hσλ

(
∂ρhλσ+∂σhρλ−∂λhρσ

)]
+ 1

4

(
∂αhσσ+∂σhσα−ησλ∂λhασ

)(
∂ρhαν +∂νhαρ −ηαλ∂λhρν

)
+O(h3)+O(h4) (A.3)

− 1

4

(
∂αhσν +∂νhσα−ησλ∂λhαν

)(
∂ρhασ+∂σhαρ −ηαλ∂λhρσ

)
+O(h3)+O(h4).

We drop the terms of third order and higher, and group terms by first and second order. All the first
order terms are contained in the first and third terms with the square brackets. We write these as

R(1)
ρν =

1

2

(
∂σ∂ρhσν +����∂σ∂νhσρ −∂σ∂σhρν−∂ν∂ρh −����∂ν∂σhσρ +∂ν∂σhσρ

)
= 1

2

(
∂σ∂ρhσν −∂σ∂σhρν−∂ν∂ρh +∂ν∂σhσρ

)
. (A.4)

This is the expression (2.7). Looking to second order, we have

R(2)
ρν =

1

2

(
∂νhσλ∂ρhλσ+������

∂νhσλ∂σhρλ−������
∂νhσλ∂λhρσ+hσλ∂ν∂ρhλσ+������

hσλ∂ν∂σhρλ−hσλ∂ν∂λhρσ

− ∂σhσλ∂ρhλν−∂σhσλ∂νhρλ+∂σhσλ∂λhρν−hσλ∂σ∂ρhλν−������
hσλ∂σ∂νhρλ+hσλ∂σ∂λhρν

)
+ 1

4

(
∂αh∂ρhαν +∂αh∂νhαρ −∂αh∂αhρν+�����

∂σhσα∂ρhαν +�����
∂σhσα∂νhαρ −������

∂σhσα∂
αhρν (A.5)

−�����
∂σhσα∂ρhαν −�����

∂σhσα∂νhαρ +������
∂σhσα∂

αhρν−�����
∂αhσν∂ρhασ−∂αhσν∂σhαρ +∂αhσν∂

αhρσ

−∂νhσα∂ρhασ−�����
∂νhσα∂σhαρ +������

∂νhσα∂
αhρσ+������

∂σhαν∂ρhασ+∂σhαν∂σhαρ −∂σhαν∂
αhρσ

)
,

where underlining indicates that the terms of corresponding color combine, and the slashes indicate
cancellations. Terms without any colored indicator are unaffected. The surviving terms are

R(2)
ρν =

1

2

(
hσλ∂ρ∂νhσλ+hσλ∂σ∂λhρν−hσλ∂λ∂νhρσ−hσλ∂λ∂ρhνσ

+ ∂σhσλ∂λhρν+∂σhλν∂σhλρ−∂σhλν∂λhσρ−∂σhσλ∂νhρλ−∂σhσλ∂ρhλν
)

(A.6)

+ 1

4

(
∂ρhσλ∂νhσλ+∂λh∂ρhλν +∂λh∂νhλρ −∂λh∂λhρν

)
,

which is the expression (4.3).



B

In this appendix we calculate Eq. (4.7) given Eq. (4.3) in order to obtain an expression for tρν. First,

we write
〈

R(2)
ρν

〉
from the definition Eq. (4.3):

〈
R(2)
ρν

〉
= 1

2

[〈
hσλ∂ρ∂νhσλ

〉
+

〈
hσλ∂σ∂λhρν

〉
−

〈
hσλ∂λ∂νhρσ

〉
−

〈
hσλ∂λ∂ρhνσ

〉
+

〈
∂σhσλ∂λhρν

〉
+

〈
∂σhλν∂σhλρ

〉
−

〈
∂σhλν∂λhσρ

〉
−

〈
∂σhσλ∂νhρλ

〉
−

〈
∂σhσλ∂ρhλν

〉]
+ 1

4

[〈
∂ρhσλ∂νhσλ

〉
+

〈
∂λh∂ρhλν

〉
+

〈
∂λh∂νhλρ

〉
−

〈
∂λh∂λhρν

〉]
. (B.1)

Next we simplify this expression making use the Lorenz and TT gauge conditions, as well as the fact
that we may integrate by parts in the averages to write〈

∂µX∂νY
〉=−〈

X∂µ∂νY
〉

, (B.2)

since the boundary term vanishes. Now, the only reason that it is okay to use these gauge conditions to
simplify the calculation is that, in hindsight, the final result actually ends up being gauge invariant [6].
The TT gauge conditions immediately kill off any of the terms involving traces (the last three terms),
and the Lorenz condition kills any terms including a divergence (terms 2, 3, 4, 5, 8, and 10). We also
notice that we may use integration by parts to flip the derivatives of the very first term in the (1/2)
square bracket, allowing us to combine it with the first term in the (1/4) square bracker. Just by using
these conditions, we reduce Eq. (B.1) to〈

R(2)
ρν

〉
=−1

4

〈
∂ρhσλ∂νhσλ

〉
− 1

2

〈
hλν∂σ∂

σhρλ
〉
− 1

2

〈
∂λhλν∂

σhσρ
〉

, (B.3)

where the second term was obtained by using integration by parts on the sixth term of Eq. (B.1), and
the third term above is obtained by using integration by parts twice to flip both derivatives in the
seventh term of Eq. (B.1). Writing it this way, it is easy to see that the Lorenz gauge kills this third term.
Recall that in the TT gauge hµν = h̃µν, thus the second term vanishes because hµν satisfies the wave
equation very far from the source where �hµν = 0. Thus, all that remains is the first term:〈

R(2)
ρν

〉
=−1

4

〈
∂ρhσλ∂νhσλ

〉
. (B.4)

If we take the trace of Eq. (B.4), we could integrate by parts to obtain another wave equation that will
vanish. Thus Eq. (4.7) becomes, quite simply

tρν =− 1

8π

〈
R(2)
ρν

〉
, (B.5)

and thus the result, expressing all quantities as explicitly being evaluated in the TT gauge, is

tρν = 1

32π

〈
∂ρhTT

σλ∂νhσλTT

〉
, (B.6)

which is the expression (4.8)
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